三亿三财经网 > > 个股研究 > lstm序列指什么

lstm序列指什么

来源:https://www.31344.com 时间:2024-05-26 编辑:admin 手机版

一、lstm序列指什么

LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。

LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。

工作原理

LSTM区别于RNN的地方,主要就在于它在算法中加入了一个判断信息有用与否的处理器,这个处理器作用的结构被称为cell。

一个cell当中被放置了三扇门,分别叫做输入门、遗忘门和输出门。一个信息进入LSTM的网络当中,可以根据规则来判断是否有用。只有符合算法认证的信息才会留下,不符的信息则通过遗忘门被遗忘。

说起来无非就是一进二出的工作原理,却可以在反复运算下解决神经网络中长期存在的大问题。目前已经证明,LSTM是解决长序依赖问题的有效技术,并且这种技术的普适性非常高,导致带来的可能性变化非常多。各研究者根据LSTM纷纷提出了自己的变量版本,这就让LSTM可以处理千变万化的垂直问题。

二、如何利用机器学习和人工智能提高金融预测的准确率和效率?

机器学习和人工智能可以应用于多种金融领域,例如市场预测、投资组合优化、风险管理等。以下是一些可以优化金融预测准确性和效率的方法:

数据清洗和特征工程:在使用机器学习算法进行金融预测之前,需要对数据进行清洗和特征提取。这包括处理缺失值、异常值、离群点等,并找到最具预测能力的特征。

选择合适的算法:不同的金融预测问题需要不同的机器学习算法,如线性回归、逻辑回归、决策树、随机森林等。需要根据问题类型和数据特征选择最适合的算法。

模型调优:通过调整算法超参数等措施来优化模型性能。例如,使用交叉验证方法来确定最佳超参数,或使用特征选择方法来减少过拟合。

时间序列分析:金融市场具有明显的时间序列特征,因此需要使用时间序列分析方法来处理和预测。例如,使用ARIMA、LSTM等算法来预测股票价格。

集成方法:将多个不同的预测模型或算法集成起来,可以提高预测准确性。例如,使用随机森林或Boosting方法来集成多个决策树模型。

自动化决策:将机器学习和人工智能与自动化决策系统相结合,可以在保证准确性的同时提高效率。例如,使用机器学习来识别风险并自动进行相应的交易。

需要强调的是,在使用机器学习和人工智能进行金融预测时,需要充分考虑数据的质量、算法的可解释性、模型的准确性和效率等多个方面。同时,还需要结合专业领域知识和经验,不断改进和优化预测模型,以提高预测结果的实用性。

三、arima模型python 怎么看平稳性

时间序列分析(一) 如何判断序列是否平稳

序列平稳不平稳,一般采用两种方法:

第一种:看图法

图是指时序图,例如(eviews画滴):

分析:什么样的图不平稳,先说下什么是平稳,平稳就是围绕着一个常数上下波动。

看看上面这个图,很明显的增长趋势,不平稳。

第二种:自相关系数和偏相关系数

还以上面的序列为例:用eviews得到自相关和偏相关图,Q统计量和伴随概率。

分析:判断平稳与否的话,用自相关图和偏相关图就可以了。

平稳的序列的自相关图和偏相关图不是拖尾就是截尾。截尾就是在某阶之后,系数都为 0 ,怎么理解呢,看上面偏相关的图,当阶数为 1 的时候,系数值还是很大, 0.914. 二阶长的时候突然就变成了 0.050. 后面的值都很小,认为是趋于 0 ,这种状况就是截尾。再就是拖尾,拖尾就是有一个衰减的趋势,但是不都为 0 。

自相关图既不是拖尾也不是截尾。以上的图的自相关是一个三角对称的形式,这种趋势是单调趋势的典型图形。

下面是通过自相关的其他功能

如果自相关是拖尾,偏相关截尾,则用 AR 算法

如果自相关截尾,偏相关拖尾,则用 MA 算法

如果自相关和偏相关都是拖尾,则用 ARMA 算法, ARIMA 是 ARMA 算法的扩展版,用法类似 。

不平稳,怎么办?

答案是差分

还是上面那个序列,两种方法都证明他是不靠谱的,不平稳的。确定不平稳后,依次进行1阶、2阶、3阶...差分,直到平稳位置。先来个一阶差分,上图。

从图上看,一阶差分的效果不错,看着是平稳的。

原文链接: 

 

时间序列 被定义为一系列按时间顺序索引的数据点。时间顺序可以是每天,每月或每年。

以下是一个时间序列示例,该示例说明了从1949年到1960年每月航空公司的乘客数量。

 

时间序列预测

时间序列预测是使用统计模型根据过去的结果预测时间序列的未来值的过程。

一些示例

预测未来的客户数量。

解释销售中的季节性模式。

检测异常事件并估计其影响的程度。

估计新推出的产品对已售出产品数量的影响。

时间序列的组成部分:

代码:航空公司乘客的ETS分解数据集:

# 导入所需的库import numpy as np# 读取AirPassengers数据集airline = pd.read_csv('data.csv',                       index_col ='Month',                       parse_dates = True)# 输出数据集的前五行airline.head()# ETS分解# ETS图result.plot()

输出:

请点击输入图片描述

请点击输入图片描述

ARIMA时间序列预测模型

ARIMA代表自回归移动平均模型,由三个阶数参数 (p,d,q)指定。

ARIMA模型的类型

自动ARIMA

“ auto_arima” 函数 可帮助我们确定ARIMA模型的最佳参数,并返回拟合的ARIMA模型。

代码:ARIMA模型的参数分析

# 忽略警告import warningswarnings.filterwarnings(ignore)# 将自动arima函数拟合到AirPassengers数据集autoarima(airline['# Passengers'], start_p = 1, start_q = 1,                          max_p = 3, max_q = 3, m = 12,                          stepwise = True          # 设置为逐步# 输出摘要stepwise_fit.summary()

输出:

请点击输入图片描述

代码:将ARIMA模型拟合到AirPassengers数据集

# 将数据拆分为训练/测试集test = iloc[len(airline)-12:] # 设置一年(12个月)进行测试# 在训练集上拟合一个SARIMAX(0,1,1)x(2,1,1,12)SARIMAX(Passengers,                 order = (0, 1, 1),                 seasonal_order =(2, 1, 1, 12result.summary()

输出:

请点击输入图片描述

代码:ARIMA模型对测试集的预测

# 针对测试集的一年预测predict(start, end,#绘图预测和实际值predictions.plot

   

输出:

请点击输入图片描述

代码:使用MSE和RMSE评估模型

# 加载特定的评估工具# 计算均方根误差rmse(test[# Passengers], predictions)# 计算均方误差mean_squared_error(test[# Passengers], predictions)

   

输出:

请点击输入图片描述

请点击输入图片描述

代码:使用ARIMA模型进行预测

# 在完整数据集上训练模型result = model.fit()# 未来3年预测result.predict(start = len(airline),                           end = (len(airline)-1) + 3 * 12, # 绘制预测值forecast.plot(legend = True)

输出:

请点击输入图片描述

趋势:趋势显示了长时间序列数据的总体方向。趋势可以是增加(向上),减少(向下)或水平(平稳)。

季节性:季节性成分在时间,方向和幅度方面表现出重复的趋势。一些例子包括由于炎热的天气导致夏季用水量增加,或每年假期期间航空公司乘客人数增加。

周期性成分: 这些是在特定时间段内没有稳定重复的趋势。周期是指时间序列的起伏,通常在商业周期中观察到。这些周期没有季节性变化,但通常会在3到12年的时间范围内发生,具体取决于时间序列的性质。

不规则变化: 这些是时间序列数据中的波动,当趋势和周期性变化被删除时,这些波动变得明显。这些变化是不可预测的,不稳定的,并且可能是随机的,也可能不是随机的。

ETS分解

ETS分解用于分解时间序列的不同部分。ETS一词代表误差、趋势和季节性。

AR(p)自回归 –一种回归模型,利用当前观测值与上一个期间的观测值之间的依存关系。自回归(AR(p))分量是指在时间序列的回归方程中使用过去的值。

I(d) –使用观测值的差分(从上一时间步长的观测值中减去观测值)使时间序列稳定。差分涉及将序列的当前值与其先前的值相减d次。

MA(q)移动平均值 –一种模型,该模型使用观测值与应用于滞后观测值的移动平均值模型中的残留误差之间的相关性。移动平均成分将模型的误差描述为先前误差项的组合。 q 表示要包含在模型中的项数。

ARIMA:非季节性自回归移动平均模型

SARIMA:季节性ARIMA

SARIMAX:具有外生变量的季节性ARIMA

请点击输入图片描述

最受欢迎的见解

1.在python中使用lstm和pytorch进行时间序列预测

2.python中利用长短期记忆模型lstm进行时间序列预测分析

3.使用r语言进行时间序列(arima,指数平滑)分析

4.r语言多元copula-garch-模型时间序列预测

5.r语言copulas和金融时间序列案例

6.使用r语言随机波动模型sv处理时间序列中的随机波动

7.r语言时间序列tar阈值自回归模型

8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类

9.python3用arima模型进行时间序列预测

最近更新

个股研究排行榜精选