三亿三财经网 > > 百科知识 > 大数据是什么意思?有什么用途?

大数据是什么意思?有什么用途?

来源:https://www.31344.com 时间:2024-09-01 编辑:admin 手机版

一、大数据是什么意思?有什么用途?

大数据是统计学中的,用于指导人们的商业行为、战略觉策、未来预期的一种分析处理方法。

主要有以下三点作用:

第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。

二、大数据分析应该掌握哪些基础知识?

随着互联网行业的不断发展。很多人想要从事互联网方面的工作,现在非常流行的就是大数据,你了解大数据是做什么的吗?学习大数据需要掌握哪些知识?大数据在未来有很大的发展机会,每个岗位需要具备的能力是不同的。下面小编为大家介绍学习大数据需要掌握的知识。

大数据业务流程有四个基本步骤,即业务理解,数据准备,数据挖掘和分析应用程序。该过程分为三个功能区:大数据系统开发,整个操作系统的构建和维护,数据准备,平台和工具开发。大数据挖掘,负责关键模型应用和研究工作。大数据分析应用程序:两者都是外部需求的访问者也是解决方案的输出,并且在许多情况下还将承担整体协调的作用。

大数据提取转换和加载过程(ETL)是大数据的重要处理环节。提取是从业务数据库中提取数据。转换是根据业务逻辑规则处理数据的过程。负载是将数据加载到数据仓库的过程中。

数据提取工具实现了db到hdfs的数据导入功能,并提供了高效的分布式并行处理能力。可以使用数据库分区,字段分区和基于分页的并行批处理将db数据提取到hdfs文件系统中,从而可以有效地按字段解析分区数据。

数据收集可以是历史数据采集或实时数据采集。它可以收集存储在数据库中的结构化数据,或收集非结构化数据,如文本,图片,图像,音频,视频等。结构变化较大的半结构化数据,可以在数据后直接存储在流量状态分析平台上收集完成。

三、什么是大数据?要简单通俗点的解释?

大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

四、什么是大数据金融?

就是建立在大规模数据信息上的金融行为。例如百度推出大数据炒股理财。

五、大数据

大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。

现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。

通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。

大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。

以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得到可以量化的收益。然而事实并非如此,实际上你可以在当天就获得真实的意图,至少是在数周内。

为什么使用大数据?

数据在呈爆炸式的速度增长。其中一个显著的例子来自于我们的客户,他们大多使用谷歌分析。当他们分析一个长时间段数据或者使用高级细分时,谷歌分析的数据开始进行抽样,这会使得数据的真正价值被隐藏。

现在我们的工具可以收集点击级的巨量的数据,因此你可以追踪用户在他们访问路径(或者访问流)中的每一个点击行为。另外,如果你加入一些其他的数据源,它就真正的变成了大数据。

更完整的解析

大数据并不仅仅是大量的数据。它的真正意义在于根据相关的数据背景,来完成一个更加完整的报告。举个例子,如果你把你的CRM数据加入到你网站的数据分析当中,你可能就会找到你早就知道的高价值用户群。她们是女性,住在西海岸,年龄30至45,花费了大量的时间在购物网站和互联社区。

现在你已经被这些知识武装起来了,那就是如何有效的设定和获取更多高价值的用户。

类似Tableau和谷歌这样的公司给用户带来了更加强大的数据分析工具(比如:大数据分析)。Tableau提供了一个可视化分析软件的解决方案,每年的价格是2000美金。谷歌提供了BigQuery工具,他可以允许你在数分钟内分析你的数据,并且可以满足任何的预算要求。

大数据是什么?

由于大数据往往是一个混合结构、半结构化和非结构化的数据,因此大数据变得难以关联、处理和管理,特别是和传统的关系型数据库。当谈到大数据的时候,高德纳公司(Gartner

Group,成立于1979年,它是第一家信息技术研究和分析的公司)的分析师把它分成个3个V加以区分:

量级(Volume):大量的数据

速率(Velocity):高速的数据产出

多样性(Variety):多种类型和来源的数据。

正如我们所说,大部分的企业每一天在不同的领域都在产出大量的数据。这里给出一组样本数据的来源及类型,他们都是企业在做大数据分析时潜在的收集和聚合数据的方式:

网站分析

移动分析

设备/传感器数据

用户数据(CRM)

统一的企业数据(ERP)

社交数据

会计系统

销售点系统

销售体系

消费者数据(例如益佰利的数据、邓氏商联的数据或者普查数据)

公司内部电子表格

公司内部数据库

位置数据(空间位置、GPS定位的位置)

天气数据

但是针对无限的数据来源,不要去做太多事情。把焦点放在相关的数据上,并且从小的数据开始。通常以2-3种数据源开始是一个好的建议,比如网站数据、消费者数据和CRM,这些会让你得到一些有价值的见解。在你最初进入大数据分析之后,你可以开始添加数据源来促进你的分析,并且公布更多的分析结果。

大数据的好处

大数据提供了一种识别和利用高价值机会的前瞻性方法。如果你想,那么大数据可以提供如下好处:

根据数据背景获得更完整的情况

利用数据驱动做出更好的商业决策

降低商业风险

市场上最好的解决方案

开发出更好的定制化产品或服务

更好的预测客户的需求和想法

迅速适应市场

在实时数据的趋势和预测上更加主动

建立精确的生命价值周期(LTV)、地图和用户类型

阅读更长和更复杂的属性窗口(用于网站点击流数据)

对通过细分的更复杂的导航进行可视化,并且改善你的转化漏斗(用于网站点击流数据)

(摘自:中国客户关系网)

最近更新

百科知识排行榜精选